Electrochemistry of Biosystems
Linking Glucose Oxidation to Luminol-based Electrochemiluminescence using bipolar Electrochemistry
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry
Stimuli-responsive microgels for electrochemiluminescence amplification

Suraniti E., Kanoufi F., Gosse C., Zhao X., Dimova R., Pouligny B., Sojic N.,
Anal. Chem. 2013, 85, 8902–8909. Editors' Highlight !

Latex micrometric beads are manipulated by optical tweezers in the vicinity of an ultramicroelectrode (UME). They are optically trapped in solution and approached the electrode surface. After the electrochemical measurement, they are optically removed from the surface. The residence time of the particle on the electrode is thus controlled by the optical tweezers. The detection is based on diffusional hindrance by the insulating objects which alters the fluxes of the redox Ru(NH3)63+ species toward the UME and thus its mass-transfer limited current. We have optically deposited successively 1, 2, and 3 beads of 3-μm radius on the UME surface, and we have recorded the variations of the current depending on their landing locations that were optically controlled. Finally we decreased the current by partially blocking the electroactive surface with a six-bead assembly. The variation of the steady-state current and the approach curves allow for the indirect electrochemical localization of the bead in the vicinity of the UME, not only when the bead is in contact but also when it is levitated at distances lower than the UME radius. These experiments show that single particles or more complex structures may be manipulated in situ in a contactless mode near the UME surface. From comparison with simulations, the electrochemical detection affords an indirect localization of the object in the UME environment. The developed approach offers a potential application for interrogating the electrochemical activity of single cells and nanoparticles.


AnalChem2013 p8902 TOC

Potential Induced Fine-tuning the Enantioaffinity of Chiral Metal Phases

Sunday, 16 December 2018
S. Assavapanumat, T. Yutthalekha, P. Garrigue, B. Goudeau, V. Lapeyre, A. Perro, N. Sojic, C. Wattanakit, A. Kuhn Angew. Chem. Int. Ed. (2018) in press Concepts leading to single enantiomers of chiral molecules are of crucial importance for many... Read More...

Surface-confined Electrochemiluminescence Microscopy of Cell Membranes

Wednesday, 14 November 2018
S. Voci, B. Goudeau, G. Valenti, A. Lesch, M. Jović, S. Rapino, F. Paolucci, S. Arbault, N. Sojic J. Am. Chem. Soc., 140, 2018, 14753-14760 Herein is reported a surface-confined microscopy based on electrochemiluminescence (ECL) that allows to... Read More...

Enhanced Annihilation Electrochemiluminescence by Nanofluidic Confinement

Wednesday, 14 November 2018
Hanan Al-Kutubi, Silvia Voci, Liza Rassaei, Neso Sojic, Klaus Mathwig Chem .Sci., 9, 2018, (2018 Chemical Science HOT Article Collection) Microfabricated nanofluidic electrochemical devices offer a highly controlled nanochannel geometry; they... Read More...