Electrochemistry of Biosystems
Linking Glucose Oxidation to Luminol-based Electrochemiluminescence using bipolar Electrochemistry
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry
Stimuli-responsive microgels for electrochemiluminescence amplification

Couedelo L., Vaysse C., Vaique E., Guy A., Gosse I., Durand T., Pinet S., Cansell M., Combe N.
Journal of Nutrition 2012, 142, 70-75.

Little is known about the ability of α-linolenic acid (Ln) to remain in the sn-2 position of TG during the absorption process. The goal of this study was to determine the Ln distribution in the lymph (Study 1) and plasma (Study 2) TG of rats fed a single i.g. load of structured TG [300 mg/rat of either oleic acid (O)/Ln/O TG (OLnO) or Ln/O/O TG (LnOO), n = 7 rats]. In an early fraction (3–4 h) of lymph (OLnO group; 100% Ln in the sn-2 position), 46 ± 2% Ln was maintained in this position in lymph TG. There was even less (29 ± 6%) in the last fraction (7–24 h) (P < 0.05). Ln was also found (9 ± 3%) in the sn-2 position of lymph TG in the LnOO group. The Ln content in lymph phospholipids was twice as high in rats when they were fed LnOO (4.2 ± 0.1%) than OLnO (2.3 ± 0.2%) (P < 0.005). Six hours postprandially (Study 2), 21 ± 3% of the Ln incorporated into plasma TG was located in the sn-2 position in the OLnO group compared to 13 ± 2% in the LnOO group (P < 0.001). Overall, these results indicate that the amount of Ln that moved from the sn-2 position of structured TG to the sn-1(3) position of lymph TG increased during absorption. This may account for a substantial hydrolysis of the 2-monolinolenylglycerols in enterocytes, leading to the intramolecular redistribution of Ln in lymph TG and, consequently, in plasma TG.

 

JNut2012 p70 TOC

Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy.


Thursday, 02 May 2019
A. Perro, L. Giraud, N. Coudon, S. Shanmugathasan, B. Goudeau, J.-P. Douliez and V. Ravaine Journal of Colloid and Interface Science 2019 548, 275-283. Coacervation is a phase separation process involving two aqueous phases, one solute-phase... Read More...

Kinetics of spontaneous microgels adsorption and stabilization of emulsions produced using microfluidics


Thursday, 02 May 2019
M.-C. Tatry, E. Laurichesse, A. Perro, V. Ravaine and V. Schmitt Journal of Colloid and Interface Science 2019, 548, 1-11. The aim of the paper is to examine the adsorption kinetics of soft microgels and to understand the role off undamental... Read More...

Adsorption of Proteins on Dual Loaded Silica Nanocapsules


Thursday, 02 May 2019
S. Ramalingam, G. Le Bourdon, E. Pouget, A. Scalabre, J. Raghava Rao and A. Perro J. Phys. Chem B 2019, 123 (7), 1708-1717. The design of nanocarriers containing hydrophobic and hydrophilic compounds represents a powerful tool for cocktail... Read More...