Electrochemistry of Biosystems
Linking Glucose Oxidation to Luminol-based Electrochemiluminescence using bipolar Electrochemistry
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry
Stimuli-responsive microgels for electrochemiluminescence amplification

Ruigrok, H.J., Arnaud-Cormos D., Hurtier A., Poque-Haro E., Poulletier de Gannes F., Ruffié G., Bonnaudin F, Lagroye I., Sojic N., Arbault S., Lévêque P., Veyret B. and Percherancier Y.

Radiation Research, 2018, 189 (1), 95-103

The existence of effects of radiofrequency field exposure at environmental levels on living tissues and organisms remains controversial, in particular regarding potential ‘‘nonthermal’’ effects produced in the absence of temperature elevation. Therefore, we investigated whether TRPV1, one of the most studied thermosensitive channels, can be activated by the heat produced by radiofrequency fields and by some specific nonthermal interaction with the fields. We have recently shown that TRPV1 activation can be assessed in real-time on live cells using the bioluminescence resonance energy transfer technique. Taking advantage of this innovative assay, we monitored TRPV1 thermal and chemical modes of activation under radiofrequency exposure at 1800 MHz using different signals (CW, GSM, UMTS, LTE, Wi-Fi and WiMAX) at specific absorption rates between 8 and 32 W/kg. We showed that, as expected, TRPV1 channels were activated by the heat produced by radiofrequency field exposure of transiently-transfected HEK293T cells, but found no evidence of TRPV1 activation in the absence of temperature elevation under radiofrequency field exposure. There was no evidence either that, at fixed temperature, radiofrequency exposure altered the maximal efficacy of the agonist Capsaicin to activate TRPV1.

2018 07

Surface-confined Electrochemiluminescence Microscopy of Cell Membranes

Wednesday, 14 November 2018
S. Voci, B. Goudeau, G. Valenti, A. Lesch, M. Jović, S. Rapino, F. Paolucci, S. Arbault, N. Sojic J. Am. Chem. Soc., 140, 2018, 14753-14760 Herein is reported a surface-confined microscopy based on electrochemiluminescence (ECL) that allows to... Read More...

Enhanced Annihilation Electrochemiluminescence by Nanofluidic Confinement

Wednesday, 14 November 2018
Hanan Al-Kutubi, Silvia Voci, Liza Rassaei, Neso Sojic, Klaus Mathwig Chem .Sci., 9, 2018, (2018 Chemical Science HOT Article Collection) Microfabricated nanofluidic electrochemical devices offer a highly controlled nanochannel geometry; they... Read More...

L’électrochimiluminescence : une méthode de choix pour la bioanalyse

Wednesday, 14 November 2018
L. Bouffier, S. Arbault, A. Kuhn, N. Sojic Techniques de l’Ingénieur. 2018. P156 Les mesures sélectives et sensibles dans des échantillons complexes tels que l’urine ou le sang sont devenues des outils indispensables dans le domaine du... Read More...