Electrochemistry of Biosystems
Linking Glucose Oxidation to Luminol-based Electrochemiluminescence using bipolar Electrochemistry
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry
Stimuli-responsive microgels for electrochemiluminescence amplification

Ruigrok, H.J., Arnaud-Cormos D., Hurtier A., Poque-Haro E., Poulletier de Gannes F., Ruffié G., Bonnaudin F, Lagroye I., Sojic N., Arbault S., Lévêque P., Veyret B. and Percherancier Y.

Radiation Research, 2018, 189 (1), 95-103

The existence of effects of radiofrequency field exposure at environmental levels on living tissues and organisms remains controversial, in particular regarding potential ‘‘nonthermal’’ effects produced in the absence of temperature elevation. Therefore, we investigated whether TRPV1, one of the most studied thermosensitive channels, can be activated by the heat produced by radiofrequency fields and by some specific nonthermal interaction with the fields. We have recently shown that TRPV1 activation can be assessed in real-time on live cells using the bioluminescence resonance energy transfer technique. Taking advantage of this innovative assay, we monitored TRPV1 thermal and chemical modes of activation under radiofrequency exposure at 1800 MHz using different signals (CW, GSM, UMTS, LTE, Wi-Fi and WiMAX) at specific absorption rates between 8 and 32 W/kg. We showed that, as expected, TRPV1 channels were activated by the heat produced by radiofrequency field exposure of transiently-transfected HEK293T cells, but found no evidence of TRPV1 activation in the absence of temperature elevation under radiofrequency field exposure. There was no evidence either that, at fixed temperature, radiofrequency exposure altered the maximal efficacy of the agonist Capsaicin to activate TRPV1.

2018 07

Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy.


Thursday, 02 May 2019
A. Perro, L. Giraud, N. Coudon, S. Shanmugathasan, B. Goudeau, J.-P. Douliez and V. Ravaine Journal of Colloid and Interface Science 2019 548, 275-283. Coacervation is a phase separation process involving two aqueous phases, one solute-phase... Read More...

Kinetics of spontaneous microgels adsorption and stabilization of emulsions produced using microfluidics


Thursday, 02 May 2019
M.-C. Tatry, E. Laurichesse, A. Perro, V. Ravaine and V. Schmitt Journal of Colloid and Interface Science 2019, 548, 1-11. The aim of the paper is to examine the adsorption kinetics of soft microgels and to understand the role off undamental... Read More...

Adsorption of Proteins on Dual Loaded Silica Nanocapsules


Thursday, 02 May 2019
S. Ramalingam, G. Le Bourdon, E. Pouget, A. Scalabre, J. Raghava Rao and A. Perro J. Phys. Chem B 2019, 123 (7), 1708-1717. The design of nanocarriers containing hydrophobic and hydrophilic compounds represents a powerful tool for cocktail... Read More...