Electrochemistry of Biosystems
Linking Glucose Oxidation to Luminol-based Electrochemiluminescence using bipolar Electrochemistry
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry
Stimuli-responsive microgels for electrochemiluminescence amplification

Girard F., Peret M., Dumont N., Badets V., Blanc S., Gazeli K., Noël C., Belmonte T., Marlin L., Cambus J.P., Simon G., Sojic N., Held B., Clément F. and Arbault S.

Phys. Chem. Chem. Phys., 2018, 20, 9198-9210

The understanding of plasma-liquid interactions is of major importance, not only in physical chemistry, chemical engineering and polymer science, but in biomedicine as well as to better control the biological processes induced on/in biological samples by Cold Atmospheric Plasmas (CAPs). Moreover, plasma-air interactions have to be particularly considered since these CAPs propagate in the ambient air. Herein, we developed a helium-based CAP setup equipped with a shielding-gas device, which allows the control of plasma-air interactions. Thanks to this device, we obtained specific diffuse CAPs, with the ability to propagate along several centimetres in the ambient air at atmospheric pressure. Optical Emission Spectroscopy (OES) measurements were performed on these CAPs during their interaction with a liquid medium (Phosphate-Buffered Saline PBS 10 mM, pH 7.4) giving valuable information about the induced chemistry as a function of the shielding gas composition (variable O2/(O2+N2) ratio). Several excited species were detected including N2+(First Negative System, FNS), N2(Second Positive System, SPS) and HO· radical. The ratios between nitrogen/oxygen excited species strongly depend on the O2/(O2+N2) ratio. The liquid chemistry developed after CAP treatment was investigated by combining electrochemical and UV-visible absorption spectroscopy methods. We detected and quantified stable oxygen and nitrogen species (H2O2, NO2-, NO3-) along with Reactive Nitrogen Species (RNS) such as the peroxynitrite anion ONOO-. It appears that the RNS/ROS (Reactive Oxygen Species) ratio in the treated liquid depends also on the shielding gas composition. Eventually, the composition of the surrounding environment of CAPs seems to be crucial for the induced plasma chemistry and consequently, for the liquid chemistry. All these results demonstrate clearly that for physical, chemical and biomedical applications, which are usually achieved in ambient air environments, it is necessary to realize an effective control of plasma-air interactions.

2018 08

Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source


Monday, 13 August 2018
E. Suraniti, P. Merzeau, J. Roche, S. Gounel, A. G. Mark, P. Fischer, N. Mano, A. Kuhn Nature Comm. 2018, 9:3229 Chemical systems do not allow the coupling of energy from several simple reactions to drive a subsequent reaction, which takes place in... Read More...

Electrically Controlled Nano and Micro Actuation in Memristive Switching Device with On-Chip Gas Encapsulation


Monday, 09 July 2018
D. Kos, H. P. A. G. Astier, G. D. Martino, J. Mertens, H. Ohadi, D. De. Fazio, D. Yoon, Z. Zhao, A. Kuhn, A. C. Ferrari, C. J. B. Ford, J. J. Baumberg Small, 2018, in press, doi.org/10.1002/smll.201801599 Nanoactuators are a key component for... Read More...

TRPV1 activation induced by modulated or unmodulated 1800 MHz radiofrequency field exposure


Monday, 18 June 2018
Ruigrok, H.J., Arnaud-Cormos D., Hurtier A., Poque-Haro E., Poulletier de Gannes F., Ruffié G., Bonnaudin F, Lagroye I., Sojic N., Arbault S., Lévêque P., Veyret B. and Percherancier Y. Radiation Research, 2018, 189 (1), 95-103 The existence of... Read More...