Electrochemistry of Biosystems
Linking Glucose Oxidation to Luminol-based Electrochemiluminescence using bipolar Electrochemistry
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry
Stimuli-responsive microgels for electrochemiluminescence amplification

D. Kos, H. P. A. G. Astier, G. D. Martino, J. Mertens, H. Ohadi, D. De. Fazio, D. Yoon, Z. Zhao, A. Kuhn, A. C. Ferrari, C. J. B. Ford, J. J. Baumberg

Small, 2018, in press, doi.org/10.1002/smll.201801599

Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa with integrated optical readout is demonstrated. Electrolyte films of 10-nm-thick Al2O3 are sandwiched between graphene and Au electrodes that allow reversible room-temperature solid-state redox producing Al metal and O2 gas in a memristive-type switching device. The resulting high-pressure oxygen microfuel reservoirs are encapsulated under the graphene, swelling to heights of up to 1 μm, which can be dynamically tracked  by plasmonic rulers. Unlike in standard memristors where the memristive redox reaction occurs in single or few conductive filaments, the mechanical deformation forces the constant creation of new filaments over the whole area of the inflated film. The resulting on–off resistance ratios are exceptionally high, reaching 108 in some cycles. The synchronization of nanoactuation and memristive switching in these devices is compatible with large-scale fabrication and has potential for precise and electrically monitored actuation technology.

2019 10

Preparation of Template-Free Robust Yolk–Shell Gelled Particles from Controllably Evolved All-in-Water Emulsions

Friday, 05 October 2018
J.-P. Douliez, A. Perro, J.-P. Chapel, B. Goudeau and L. Béven Small 2018, 1803042 A template-free all-aqueous bulk preparation of robust hollow capsules having a gelatin shell from all-in-water double emulsions is reported. The hot (>40 °C)... Read More...

Highly ordered macroporous poly-3,4-ortho-xylendioxythiophene electrodes as a sensitive analytical tool for heavy metal quantification

Tuesday, 02 October 2018
G. Salinas, B. A. Frontana-Uribe, S. Reculusa, P. Garrigue, A. Kuhn Anal.Chem. 2018, in press, DOI: 10.1021/acs.analchem.8b03779 Highly ordered macroporous electrodes of the conducting polymer poly-3,4-ortho-xylendioxythiophene (PXDOT) are presented... Read More...

Optimal thickness of a porous micro‐electrode operating a single redox reaction

Tuesday, 02 October 2018
T. D. Le, L. Zhang, S. Reculusa, G.Vignoles, N. Mano, A. Kuhn, D. Lasseux ChemElectroChem 2018, in press, doi.org/10.1002/celc.201800972 This article reports on a procedure to predict the optimal thickness of cylindrical porous electrodes operating... Read More...